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Abstract-Precise description of natural fault surfaces is indispensable to understanding the geometry, mechanics 
and fluid transport properties of faults. Profiles of fault surfaces in the Wasatch fault zone and Oquirrh Mountains, 
Utah, are measured at 30” increments within the fault plane to determine the directional anisotropy of surface 
roughness at wavelengths between 10e3 m and 30 m, and then compared with profiles of larger-scale fault surfaces. 
Surface anisotropy and an increasing ratio of surface amplitude to wavelength are consistent with self-affine fault 
topography at wavelengths between 1 mm and approximately 5 km. Fractal dimension of surface profiles generally 
decreases systematically as the angle to the slip direction increases. Directional anisotropy is described by an 
azimuthal scaling function y+ = K sin(d) + yo or AF,+ = (AF,,,,, - I)sin(q%) + 1, where y+ and AF+ are the 
amplitude to wavelength ratio and anisotropy factor respectively at azimuth 4, measured clockwise relative to slip 
direction within the fault surface, and yo is the amplitude to wavelength ratio parallel to slip direction. K = (ygO- yo) 
is an anisotropy coefficient and increases systematically with spatial wavelength on the fault surface. 
Characterization of natural fault surfaces provides parameters such as fractal dimension (D), intercept (log(C)) 
of power spectra, profile variance, and variation in anisotropy factor (AF), which are needed to generate fractal 
models of natural fault surfaces using spectral synthesis. We generate sample models which illustrate the differences 
between fault surfaces characterized by constant versus azimuthally varying fractal dimension. The latter model 
surfaces contain low amplitude corrugations superimposed on elongate ridges which parallel slip direction. This 
surface texture resembles that ofnatural fault surfaces that refract across lithologic layering or are cut by secondary 
faults such as R and R’ shears. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

Describing and predicting the geometry of natural rock 
fracture surfaces is important because surface roughness 
affects the mechanical and hydraulic behavior of joints 
and faults. Anderson (1951) recognized that faults are 
not planar, but irregular on all scales with strong spatial 
anisotropy. Fault surfaces contain non-cylindrical ridges 
and furrows, or corrugations elongated parallel to slip 
direction (Power et al. 1987, 1988, Scholz 1990, pp. 145- 
147). There are two basic approaches to the description of 
surface roughness, Euclidean and fractal measures 
(Power & Tullis 1991). Euclidean measures include 
statistical descriptions such as root mean square rough- 
ness (crms) and centerline average roughness (R,). Fractal 
measures characterize roughness by the fractal dimension 
(D), which is a parameter describing the scaling proper- 
ties of surface topography. Fractal measures are widely 
used in the characterization of natural objects and 
processes that are irregular and chaotic (Mandelbrot 
1967, 1983). Several authors conclude that the roughness 
of natural faults and fractures is fractal (Brown & Scholz 
1985, Brown et al. 1986, Scholz & Aviles 1986, Power et 
al. 1987, 1988, Power & Tullis 1991, Power & Tullis 
1992). Fractal measures of rock surface roughness are 
applied to estimate the strength and stiffness of rock 
joints (Barton 1986, Brown & Scholz 1986), fluid flow 
through fractures (Brown 1987, Wang et al. 1988, Nolte 
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et al. 1989), wear processes during fault zone evolution 
(Scholz 1987, Power et al. 1988, Power & Tullis 1992), 
and surface properties of earthquake rupture (Aviles 
et al. 1987, Okubo & Aki 1987, Bruhn et al. 1991). 

We surveyed several fault surfaces in the Salt Lake and 
Provo segments of the Wasatch fault zone, and in the 
western part of the southern Oquirrh Mountains, Utah, 
U.S.A., to investigate the scaling properties and aniso- 
tropy of fault surfaces. We apply fractal measures to fault 
surfaces at distances between lop3 m and 30 m to 
characterize directional anisotropy and to define a 
scaling law that predicts roughness as a function of both 
distance and direction along fault surfaces. The results 
are extrapolated to larger scale using data from fault- 
controlled ore deposits in underground mines. We also 
discuss possible reasons for the observed change in 
scaling properties at various wavelengths. Finally, we 
generate sample fractal models of natural fault surfaces 
based on scaling parameters determined from the field 
measurements. 

GEOLOGIC SETTING 

Wasatch fault zone 

The Wasatch normal fault zone forms part of the 
eastern boundary of the Basin and Range province in the 
western United States. The fault zone extends approxi- 
mately 370 km from southern Idaho to central Utah 
(Machette et al. 1987, 1991, Schwartz & Coppersmith 
1984). The Wasatch fault zone is divided into 10 segments 
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based on the geometry of the fault zone and evidence for 
the time of recent fault movements (Machette et al. 1991). 
The Salt Lake and Provo segment are two of these 10 
segments. We measured fault surfaces at three sites in the 
Wasatch fault zone; two in the Salt Lake segment (Red 
Butte and Draper) and one in the Provo segment (Seven 
Peaks) (Fig. 1). The Red Butte site is located in Mesozoic 
and Paleozoic strata in the northern part of the Salt 
Lake segment. The Draper site is located at the southern 
end of the Salt Lake segment in Precambrian meta- 
morphic rocks and Tertiary quartz monzonite of the 
Little Cottonwood stock. The Seven Peak site is located 
in Paleozoic strata in the central part of the Provo 
segment. 

The fault surface measured at the Red Butte site cuts 
through Triassic limestone with thin shale interbeds, and 
is one of many subsidiary normal faults developed in a 
band l-2 km wide that parallels the Quaternary trace of 
the Wasatch fault zone in the Salt Lake segment (Gibler 
1985, Bruhn et al. 1987). The time of faulting is not well 
constrained, but the location and paleo-stress directions 
inferred from fault kinematics indicates that faulting 
occurred under the Late Tertiary extensional stress 
regime (Gibler 1985). The Red Butte fault surface strikes 
N1O”W to NlYW, dips 32”W to 38”W, and contains 
grooves trending 320”-330”. 

Several fault surfaces were measured at the Draper site. 
These faults cut white to rusty brown weathering 

quartzite of the Upper Proterozoic Big Cottonwood 
Formation. The faults form triangular facets that Gilbert 
(1928) interpreted to be part of the exhumed Wasatch 
fault zone. In detail, there are several parallel faults that 
give the quartzite a crude, sheet-like structure parallel to 
the faces of the triangular facets. The faults strike N1O”W 
to N30”E, dip 35”W to 5O”W, and contain slickenlines 
and grooves trending 230” to 290”. 

The fault surface measured at the Seven Peak site cuts 
Mississippian limestone. The surface is exhumed because 
Quaternary gravel was excavated from the bedrock. The 
excavated surface is - 900 m2, allowing measurement of 
surface profiles up to 30 m in length. The last faulting 
event occurred during the Holocene (Machette et al. 

1991). The Seven Peak surface strikes N1O”E to N20”E, 
dips 4O”W to 45”W, and contains slickenlines and 
grooves trending 235”-260”. 

Oquirrh Mountains 

The Oquirrh Mountains are located about 30 km west 
of Salt Lake City in the eastern part of the Great Basin 
(Fig. 1). The Soldier Canyon site is located in the north 
central part of the Soldier Canyon fault zone, a zone of 
normal faulting developed in Upper Mississippian lime- 
stone along the western flank of the mountain range. 
Although the age of the most recent faulting is uncertain, 
it is probably late Quaternary based on the degree of 
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Fig. 1. Index map of study areas in the Wasatch fault zone and the southern Oquirrh Mountains, Utah, U.S.A. 
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weathering of the fault surface and the age of adjacent 
scarps in unconsolidated deposits (Wu & Bruhn 1994). 
The fault surface strikes N20”W, dips 5O”SW, and the slip 
direction trends 245”-250”. 

The Ophir Canyon site is located in Upper Mississip- 
pian limestone at the northern end of the West Mercur 
fault zone, a zone of Late Tertiary normal faults. The 
Ophir fault surface strikes N20”E, dips 7O”NW, and the 
slip direction trends 280”-290”. 

DATA COLLECTION AND ANALYSIS 

Data collection 

Profiles on fault surfaces were made in the field using 
two types of stylus profilometer: one a digital stylus, and 
the other a sliding pin contour gauge. A tape measure was 
used for profiles longer than 1.2 m. The digital stylus 
profilometer was used to measure profiles of fault 
surfaces at scales between 1 mm and 1.2 m with a 
sampling interval of 0.5 mm. The device consists of an 
aluminum rail and sliding stylus. Horizontal and vertical 
potentiometers record the position of the stylus on a 
portable data logger. The sliding pin contour gauge was 
used to measure 15 cm length profiles with a sampling 
interval of 0.7 mm. A stretched tape measurement was 
used for profiles at scales between 1 m and 30 m with a 
sampling interval of 2-5 cm. The longest and shortest 
wavelengths in the data sets were the profile length and 
twice the sampling interval or Nyquist cutoff wavelength, 
respectively. The sampling interval was smaller than the 
cutoff wavelength for the stylus profilometer in order to 
avoid aliasing of short wavelengths. The digital stylus 
had mechanical measurement errors of + 0.4 mm over a 
vertical displacement range of 85.0 mm. The horizontal 
displacement error was +0.6 mm over the maximum 
range of 12 15 mm. The horizontal precision error was less 
than the instrumental detection limits of 0.5 mm, but the 
vertical precision error of + 1.0 mm was about twice as 
large as the vertical mechanical error, mostly due to 
binding of the vertical potentiometer during sliding over 
rough surfaces. 

Power et al. (1987) found that the amplitude to 
wavelength ratio of fault surface topography changed 
when measured parallel and perpendicular to fault slip 
direction. In this study, we extend the type of measure- 
ments made by Power et al. (1987) to include profiles at 
several azimuths between the slip-parallel and slip- 
perpendicular directions. We have investigated scaling 
between amplitude and wavelength by measuring profiles 
at azimuthal increments of 30” within the fault surfaces 
(Fig. 2). The measurements were repeated at two to four 
different sites on the fault surface. Three to four parallel 
profiles were measured at each azimuth at every site, in 
order to obtain representative profiles of the surface and 
to aid data processing during power spectra computa- 
tion. Profiles between lo2 m and lo4 m long were 
obtained by digitizing mapped fault surfaces from an 
SG lG:B-E 

underground mine (Daisy Mine) in the Oquirrh fault 
zone, and fault traces from published maps of the Salt 
Lake segment in the Wasatch fault zone (Crittenden 
1965, Hintze 1978, Horn & Crittenden 1987, Wu & 
Bruhn 1994). These profiles represent large scale, aver- 
aged fault topography that can then be compared with 
the shorter profiles measured on outcrops in the same 
fault zone. The digitized, map scale fault traces were 
rotated to a down-dip view before data analysis in order 
to remove topographic effects on fault trace sinuosity. 
The sinuosity or true amplitude of the mapped fault 
traces was found as follows: we digitized the fault traces, 
found the average strike and dip of the fault by fitting a 
plane through the traces using linear, least-squares 
regression, and then rotated the data points so the best 
fit plane dips 90”. The resulting profile is the deviation of 
the fault trace about the best fit plane. 

Fourier power spectral method 

Surface roughness is described by the Fourier power 
spectral method (Brown & Scholz 1985, Power et a/. 
1987, 1988, Power & Tullis 1991). A power spectrum 
from each profile is computed using a fast Fourier 
transform (FFT) algorithm, following the recommenda- 
tion of Bendat & Piersol (1986) as described in Brown & 
Scholz (1985) and Power et al. (1988). The steps in the 
procedure are as follows. 1) Removal of linear trend from 
the profile data. 2) Cosine tapering of the first and last 
10% of the data points to diminish “leaking” of power at 
each side of the spectrum caused by finite profile length. 
3) Calculation of spectral amplitudes using a fast Fourier 
transform (FFT) program. A raw estimate of power 
spectral density is calculated by squaring the amplitude at 
each frequency. 4) The raw power spectra are normalized 
by dividing the power at each frequency by the length of 
the profile. 5) Spectra from each of the 3 or 4 parallel 
profiles measured along a specific azimuth at each site are 
averaged to produce a smooth spectrum and reduce 
spurious variations introduced in single profile spectra 
because of the discrete frequency resolution of the FFT 
(Brown & Scholz 1985, Power et al. 1988). 6) A Hanning 
filter is applied to the averaged power spectra to smooth 
the curve and improve estimation of the power spectral 
density. 7) Parts of profiles collected with the different 
instruments (contour gauge, digital stylus, or tape 
measure) are joined together where the frequency range 
of each instrument overlaps. Linear least squares regres- 
sion is then used to compute the slope (a) and intercept 
(log(C)) for each average profile. In most cases the 
profiles can be visually segmented into linear sections 
with different slope. In these cases, linear regression is 
carried out on each segment separately. This procedure is 
repeated for each of the six reference directions on the 
fault surface. 

Fractal surfaces are characterized by a power spectral 
density function G(f) of the form: 

G(f) = Cf --a (1) 
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Fig. 2. Examples of fault surface profiles. The number on the right side is the azimuth of the profile measured clockwise with 
respect to slip direction as viewed down-dip. Note that the profiles change significantly as the azimuth varies. (a) Example of 
surface profiles of a fault measured with a contour gauge. (b) Example of surface profiles of a fault measured with a digital 

stylus. 

or: 

log( = log(C) - CylogV) 

where f is the spatial frequency and C is a constant (Berry 
& Lewis 1980, Brown & Scholz 1985, Scholz & Aviles 
1986, Power & Tullis 1991). Least squares regression of 
log{G(f)} versus log(f) determines the slope (-a) and 
intercept, log(C), of the power spectrum (Fig. 3). CI 
determines how the surface topography changes or 
‘scales’ with wavelength. Log(C), together with 01, 
describes the steepness of the surface topography or 
total profile variance (mean square amplitude) at a 
specific wavelength (Power & Tullis 1991). Berry & 

Lewis (1980) derived the relationship between the slope 
of power spectra (CI) and fractal dimension (D) as 

D = 2.5 - a/2(2 5 (II ( 3) (2) 

corresponding to 1.0 5 D 5 1.5, where D = 1.5, this 
corresponds to fractional Brownian profile. Large D 
implies smaller slope (CL), so there is greater amplitude at 
shorter wavelength relative to a longer wavelength than if 
D is small. The profile becomes more jagged or rough 
appearing as D increases. Fractal dimension (D) is a 
measure of amplitude or scaling as a function of 
wavelength, but does not by itself provide information 
about the amplitude. Computing the amplitude at a 
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7 amplitude to wavelength ratio (v) is used to visualize the 
results of spectral analyses, following the treatment 
presented by Kamb (1970) and Power & Tullis (1991). 
We need to consider a case in which the amplitude to 
wavelength ratio (y) scales with wavelength, because 
natural fault surfaces are self-affine and y decreases with 
increasing wavelength. 

The root mean square variance (c& of fault surfaces 
increases approximately linearly as the profile length is 
increased. o,, may be compared with power spectra 
because it is equal to the square root of the area under the 
power spectral density function G(f) (Power et al. 1988, 
Power & Tullis 1991). 

(3) 

LOG (Spatial Frequency) (mm-‘) 

Fig. 3. The determination and description of a fractal profile model by 
the spectral method. Estimates of power spectral density are described 
by a line of slope (x) and intercept (log(C)) using a linear fractal model 
(solid line). The slope (z) determines scaling properties of amplitude 
versus wavelength, and the intercept (log(C)) determines the magnitude 
of the surface elevation for a given slope (I) (after Power & Tullis 1991). 

specific wavelength also requires the intercept coefficient 
‘log(C)‘. 

Amplitude to wavelength ratio from power spectra and the 
scaling law 

Power spectra describe the distribution of amplitude at 
various wavelengths within a fault profile (Power et al. 
1987, 1988, Power & Tullis 1991). The dimensionless 

G(f) = cf-a 

\ 

fmin fk/fi fk fifk 

Spatial Frequency 

wherefmin andfmax are the lowest and highest frequencies 
considered, respectively. The lowest frequency (fmin) is 
equal to l/L where L is the profile length. We consider the 
changing amplitude to wavelength ratio for a profile with 
a geometric frequency sequence, where the frequency 
change is a multiple of 2. The distance between each 
discrete frequency in the geometric sequence is variable 
when plotted on an arithmetic scale or graph (Fig. 4, left), 
but this distance is constant when plotted on a logarith- 
mic scale (Fig. 4, right). On a logarithmic scale, each 
frequency has a center frequency fk = 2’“- ‘) fmin with 
interval Af (Fig. 4, right), where 

on the logarithmic axis. 
The profile variance within the frequency interval 

results from substituting (1) into (3) with (4) and 

fmin fk,fi fk Afk fmar 

LOG (Spatial Frequency) 

Fig. 4. Characteristics of the root mean square variance (u2 ,,) and the total power within a geometric frequency interval (4f) 
at a given center frequency (.fk) using the relationship between the amplitude to wavelength ratio (:‘k) and slope (z) and 
intercept (log(C)) of the power spectrum. u~~,,,~ is equal to the area under the power spectral density function (G(,f)) and can be 
decided by )jk on an arithmetic scale (left). It is, however, controlled by s( and log(C) of power spectrum on a logarithmic scale 

(right). Detailed derivation of the relationship is discussed in the text. 
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integrating to give: 

s Jai 
~rnls 4f = 2 I r.,~ W)df = i 

-&(hpp-‘- a’-“>. 

(5) 

The profile variance within the specified frequency 
interval (Af) can be compared with the mean square 
amplitude of a single sine wave with wavelength & = l/fk 
and amplitude ak = ykik. The mean square value of the 
sine wave is: 

(6) 

The relationship between yk, CI, C, and fk is found by 
combining (5) with (6): 

y; = ~,,3-a(dT-1 - &-“> (7) 

or: 

ai = -=&p(dT’ - ,‘-.> 

For a self-similar profile generated by a geometric 
frequency sequence the slope (~1) = 3, and the amplitude 
to wavelength ratio (yli) is independent of frequency, with 
the constant value 

Yk = 

I I I I 
a=3.0 (D=l .O) 

\ ar2.6 (D=l.lO) 

200 400 600 800 1000 200 400 600 800 1000 

Wavelength (mm) Wavelength (mm) 

(4 w 

In general, yk decreases with increasing wavelength for a 
geometric frequency sequence. However, if &.= 3, the 
profile generated by a geometric frequency sequence is 
self-similar, and yk is constant (equation 8). 

Is the profile model of geometric frequency sequences 
most applicable to natural fault surfaces which are 
approximately ‘Fractional Brownian’ in surface topo- 
graphy? The answer may be found by comparing ?jh_ 
determined from spectral analysis with the relationship 
between mean elevation change (V) and spatial distance 
or wavelength (X) in the fundamental scaling law for self- 
affine fractional Brownian motion or displacement (Voss 
1988): 

v2 ZZ BX”H (9) 

where H is the Hurst exponent, and is related to the 
fractal dimension D by H = 2-D. In two-dimensions D 
may vary from 1.0 to 2.0 and H is constrained to 
01H~1.0. D is estimated from the slope (z) of the 
power spectra using equation (9), D= 2.5-42. The 
mean elevation change to wavelength ratio (6) is found 
by dividing equation (12) by X2 and taking the square 
root to give 

lj = &x(H-I). (10) 

A normalized mean elevation change to wavelength ratio 
dfBm by reference to the self-similar case (63. in which \ .., 

D=l.O, a=3.0 and S,=z/B, is defined as 

$-Jjm = [S/S,] = ‘eH-l’. (11) 

0.6 
‘.\, 

l\ 

i 

a=2.8 (D=l .lO 

a=2.0,(D=l.50) , I I 

Fig. 5. Normalized ratio of amplitude to wavelength from power spectra and normalized ratio of mean elevation to 
wavelength from basic scaling law for fractal geometry. (a) Geometric frequency sequence. (b) Scaling law. 
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crB,,, is compared to Yk for profiles generated by the 
summation of geometric frequency sequences in Fig. 5. 
We conclude that the spectral analysis of fault profiles is 
best accomplished using the geometrical sequence model, 
in which yx decreases with increasing wavelength. We 
now apply these results to modeling the roughness and 
anisotropy of fault surfaces. 

RESULTS 

Variation of &yes and irztercepts 

The fault surface profiles of Fig. 2 show a strong 
direction dependent roughness or topography with 
respect to the slip direction, which is reflected in their 
ensembled power spectra (Fig. 6). Neither the slopes nor 
the intercepts of the power spectra are constant for 
profiles from the same fault surfaces (Figs. 6 and 7). 
Individual spectra can be also divided into segments of 
slope based on visual inspection of the logarithmic plot of 
power spectral density versus spatial frequency (Fig. 6). 
Slope, a, varies systematically with respect to fault slip 
direction for most profiles that are up to 15 cm long, 
obtaining maximum values in the direction perpendicular 
to slip and minimum values parallel to slip (Fig. 7a). 
Profiles perpendicular to slip direction have the greatest 
amplitude at a specific wavelength, and amplitude 
generally decreases as the profile azimuth approaches 
the slip-parallel direction. Slopes of power spectra at 
wavelengths between 1 mm and 15 cm are a = 1.94 f 0.05 
to a = 2.28 k 0.04, which imply that the surface profiles 
are self-affine and the fractal dimension (D) is between 
1.36kO.02 and 1.53 kO.03; the latter value is close to 
‘Brownian motion’ (D = 1.5). The average intercepts of 
power spectra range from log(C)= -3.08kO.02 to 
log(C) = - 3.04 + 0.03. The surfaces are anisotropic 
because D is a function of profile azimuth. 

At profile lengths between 15 cm and 1 m, the slopes of 
power spectra also generally increase as the profile 
azimuth varies between the slip direction and the 
direction perpendicular to slip (Fig. 7b), with the 
exception of the Soldier Canyon fault surface. Slopes 
range between a = 2.48 f 0.05 and a = 2.75 & 0.04, corre- 
sponding to D = 1.13 f 0.02 to D = 1.26 & 0.03. However, 
the intercepts of the power spectra do not vary system- 
atically for all surfaces as the profile azimuth varies. They 
either fluctuate about a mean value of z - 3.30 to - 3.70 
(Fig. 7b, Draper fault surface) or decrease systematically 
as the azimuth increases (Seven Peak fault surface). The 
maximum observed change in the intercept (log(C)) is 
z - 1 .O for the fault surface at the Seven Peak locality in 
the Wasatch fault zone. Azimuthal variations in the slope 
and intercept of power spectra from profiles longer than 
1 m are similar to those from profiles between 15 cm and 
1 m long. The magnitude of the slope and intercept is 
similar in the slip parallel direction, but significantly 
greater in the direction perpendicular to slip than 
predicted by extrapolation of data from the 15 cm to 1 m 
long profiles. The average slope in the direction perpen- 

dicular to slip is a=2.88+0.05 while the intercept 
log(C)= -3.32kO.16. 

There is a significant change in slope and intercept of 
the power spectra located in the wavelength band 
between 5 cm and 15 cm (spatial frequency range between 
10-l and lop2 mm-‘) (Fig. 8). The slope is greater and 
the intercept is less at wavelengths above 15 cm than at 
shorter wavelengths. This wavelength dependent prop- 
erty of the slope persists regardless of azimuth. However, 
the intercept remains essentially constant at all profile 
azimuths at wavelengths less than 15 cm, but either 
fluctuates or decreases systematically as a function of (b at 
longer wavelengths. A similar change in slope and 
intercept was noted in the same wavelength band by 
Power & Tullis (199 l), and they ascribed this variation to 
weathering (pitting?) of the fault surface at short 
wavelengths. An alternative presented in the discussion 
is an increase in roughness at short wavelengths created 
by the drag of wear fragments along the fault surface 
during sliding, and secondary fracturing that roughens 
the fault surface. 

Azimmuthal scaling function and anisotropy 

The directional anisotropy of surface roughness is 
evident by changes in both a and log(C) between profiles 
oriented at different azimuths with respect to slip 
direction (Fig. 7). There is no clear, systematic change in 
the slope and intercept of the power spectra, but both 
parameters change in such a way that within each of the 
three profile length intervals (1 mm < A < 15 cm, 15 cm 
< 1 < 1 m, ,l > 1 m) the amplitude to wavelength ratios 
y4(1) change systematically with respect to slip direction 
(Fig. 9). The azimuthal scaling function for y,+ at the 
longest wavelength or lowest frequency in each of the 
specified profile length intervals is defined as: 

or: 

~6 = Ksin(@) + YO (12) 

AF@ = (AF,,, - l)sin($) + 1 

where K= (ygo - yo) is the anisotropy coefficient, ya is the 
amplitude to wavelength ratio parallel to slip direction, 
yb and AF$ are the amplitude to wavelength ratio and 
anisotropy factor respectively at azimuth 4, measured 
clockwise to the slip direction, and AF,,, is a maximum 
anisotropy factor of ygo/yo. Variations of K, y. and AF,,, 

at different wavelengths are summarized in Table 1. For 
example, y+ at ), = 1 m is less than at I = 15 cm, but K is 
essentially the same at both wavelengths. However, K at 
1> 1 m is significantly larger than K at ;I5 1 m. The ratio 
AFmax increases markedly at 1 z 1 m, varying from w 1.9 
atI51 mto ~4.5 at ;1? 1 m. A similar change in y90~ya can 
be observed in the power spectral plots produced by 
Power & Tullis (1991), although they did not discuss the 
implications. We suspect that this variation reflects a 
fundamental change in the dominant processes creating 
fault topography at scales below and above about 1 m. 
The azimuthal scaling function provides information for 
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Fig. 6. Ensembled power spectra for two fault surface profiles. Dashed lines are contours ofconstant amplitude to wavelength 
ratio(y) which allow easier visual interpretation of the spectra. The lower line and higher line represent y = 10e3 and y = lo-‘, 
respectively. Note that each profile is characterized by a slope and intercept as shown in the idealized model of Fig. 3. In this 
figure, the profiles are plotted to scale, with each profile to the right of profile A referenced to the log(spatial frequency) = 0 bar 
on the horizontal axis below the profile. A: parallel to slip. B: 30” to slip. C: 60” to slip. D: perpendicular to slip. E: 120” to slip. 

F: 150” to slip. Note that the slopes and the intercepts are not constant for profiles within a given fault surface. 

quantitative modeling of directional anisotropy, which is geometry of fault surfaces at dimensions that are not 
important for modeling fault geometry with the algo- usually available for direct measurement. Brown & 
rithm of Brown (1995). Scholz (1985) note that such extrapolation is hindered 

by changes in fractal dimension between different length 
Comparison with profiles of larger-scale fault surfaces scales. The problem is further compounded by the effects 

of fault surface anisotropy. Power spectra from fault 
Extrapolation of fault surface properties from outcrop surfaces of different size are marked by significant 

to larger scales is crucial to predicting the large-scale changes in c( and the intercept (log(C)). Profiles measured 
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Fig. 7. The relationship between angle to slip direction along fault surface and slope (a) and intercept (log(C)) of the power 
spectra for surfaces at each study site. (a) Short profiles of 15 cm length, (b) longer profiles of 1.2 m length. Note that LY (open 
squares) increases gradually from the direction parallel to slip to the direction perpendicular to slip for all surface profiles. The 
intercept, however, is more variable. Note that log(C) (solid squares) fluctuates much more for longer profiles(b) than shorter 
ones (a). These variations in a and log(C) are discussed in detail in the text. Refer to Fig. 3 for definition of slope (a) and log(C). 

Error bars indicate 1 standard deviation about the preferred value. 

Table 1. Variation of K, Yo, ygo, and y~/ya (Anisotropy Factor = K/y0 + 1) at different scales 

Surface 

15 cm scale 1 m scale several (410) meter scale 

K YO Y90 Yw/Yo K Yo Y90 Yw/Yo K Yo YW Y9oIYo 

Red 
Butte 

Draper 

Seven 
Peak 

Soldier 

Ophir 

4.10 10.70 14.80 1.38 
(kO.40) (kO.40) (kO.40) 

5.30 7.90 13.20 1.67 

(*;:;3; W;) (kO.37) 3.455 1.12 
(kO.06) (kO.06) (kO.06) 

4.60 6.90 11.50 1.67 
(kO.17) (kO.17) (kO.17) 

8.40 5.65 14.05 2.49 
(jI0.38) (kO.38) (kO.38) 

5.70 
(k0.26) 

4.60 
(fO.43) 

0.76 
(kO.05) 

3.40 
(kO.31) 

6.20 
(kO.75) 

6.80 12.50 1.84 10.40 3.10 13.50 4.36 
(k0.26) (k0.26) (kO.65) (f0.65) (kO.65) 

5.90 10.50 1.78 

(‘;:4;) (kO.43) 2.46 1.48 17.30 3.70 21.00 5.68 
(zbO.05) (fO.05) (f0.20) (fO.20) (kO.20) 

5.60 9.00 1.61 11.90 3.60 15.50 4.31 
(kO.31) (kO.31) (kO.56) (zbO.56) (kO.56) 

4.13 10.33 2.50 9.60 3.90 13.50 3.46 
(kO.75) (kO.75) (k0.48) (kO.48) (kO.48) 

Average 4.55 6.85 11.40 1.66 

(kO.24) (kO.24) (k0.24) 

4.13 

(k 0.36) 

4.86 8.96 1.84 12.30 3.58 15.88 4.43 

(kO.36) (kO.36) (kO.48) (kO.48) (k0.48) 

All values are multiplied by 10e3 except anisotropy factor. 
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Fig. 8. Summary figure illustrating how the change in the slope and intercept of the power spectra occurs at spatial frequency 
between IO-’ and IO-* mm-’ at wavelengths below 1 m. Note that the slope is greater and the intercept is less at wavelengths 

above I-10 cm than at shorter wavelengths. Wavelength(k) is written in cm above spatial frequency axis for reference. 

perpendicular to fault slip direction are nearly self-similar Amplitude data from surface outcrops and digitized 
(ax3)atwave1ength~>1mandy~=10-*to10-’(Fig. mine maps are plotted against models of y versus A for 
10). This is in contrast to profiles shorter than 1 m, which directions parallel (Fig. 1 la) and perpendicular to slip 
are characterized by self-affine scaling (IX-C 3) and an (Fig. 11 b) using equation (7). The fractal dimension for 
amplitude to wavelength ratio (y+) that increases as slip parallel profiles is D z 1.2 for 2 c 5 m, and D x 1.1 for 
wavelength decreases (i.e. ranging from z 10-l to 10F3 60 m < il< 150 m (Fig. 1 la). D is similar for profiles 
at 1 mmclt 1 m). 
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Fig. 9. The relationship between the angle to slip direction and the amplitude to wavelength ratio (y) for each natural fault 
surface studied. Solid circles denote data at Ai 15 cm, solid triangles for 15 cm < 151 m, and solid squares for I > 1 m. Note 

that the variation of amplitude to wavelength ratio (y) is well fitted with a simple sine curve. 
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Fig. 10. Power spectra for profiles approximately perpendicular to the 
slip direction for a large wavelength bandwidth between 10 mm to about 
5 km from natural fault surfaces along (a) the Wasatch fault zone and 
(b) the Oquirrh Mountains. Fault surface spectra were calculated from 
outcrop profiles and digitized profiles taken from maps. Dashed lines 
are contours of constant amplitude to wavelength ratio (y) which allow 
easier visual interpretation of the spectra. The lower lines and the higher 

lines represent p= 10e3 and y= IO-‘, respectively. 

significant change in the intercept (log(C)) of the power 
spectra (Fig. 11 b). D x 1.15 for A < 1 m, and decreases to 
D x 1.05 for 1 m < A < 150 m. The intercept (log(C)) of the 
power spectra for 2~5 m is less than the intercept for 
;1> 5 m, which causes a significant change in 7% between 
the two different wavelength bands (Fig. 1 lb). Another 
important change in scaling may take place at I z 3 km 
above which D x 1 .O. For 2 > 3 km, there is a change in 

intercept (log(C)) in the power spectra, and an accom- 
panying change in the trend of y4 as a function of A. 
However, the traces of fault zones at scales greater than 
several tens of meters probably represent the linking 
together of several fault surfaces, and perhaps should not 
be directly compared with the single surface profile 
measurements made at smaller scale. 

DISCUSSION 

Scaling property change and processes for the evolution of 
surface roughness 

Chen & Spetzler (1993) noted slope breaks in power 
spectra within several different wavelength bands from 
both artificial sliding surfaces and natural fault surfaces 
and fault zones. This observation is based upon their own 
laboratory experiments and the re-examination of pre- 
vious results (Scholz & Aviles 1986, Aviles et al. 1987, 
Okubo & Aki 1987, Power et al. 1987). For their 
experimental work, Chen & Spetzler (1993) suggest that 
the break in slope at wavelengths of several millimeters is 
caused by a change in the dominant mode of deformation 
from small-scale intergranular cracking to intragranular 
cracking at a larger scale. 

We also observe changes of power spectra slope and 
shift of intercept between different wavelength bands in 
this study (Figs. 6, 8 and 10). The scaling parameters of 
the natural fault surfaces change as a function of 
wavelength, and can be approximated as constants only 
within discrete wavelength bands (Table 2). This is 
particularly clear for profiles measured perpendicular to 
slip direction, but can also be detected from profiles 
measured parallel to slip, along which additional wear 
during sliding may reduce the sharpness of fault intersec- 
tions and offsets. Presumably, this variation in scaling 
parameters reflects different processes operating at 
different spatial scales. For example, a significant 
increase in slope with a decrease in intercept of power 
spectra exists in the wavelength band of several cm 
<I c 15 cm (Fig. 8), which reflects a change in character- 
istic roughness of fault surfaces at this wavelength. 
Another change in slope and intercept of power spectra, 
as reflected in K and AF, occurs at Lx 1 m (Table 2). 
Notably, single slip events on large faults during M = 6-7 
earthquakes are typically of the order of several meters or 
less, and perhaps roughness in this wavelength band (1 
mm < J_ < several m) reflects a combination of frictional 
ploughing, secondary fracturing, and intersections 
between anastomosing fractures along sliding surfaces. 
Pitting of surfaces by weathering may also contribute to 
roughness within this wavelength band (Power & Tullis 
1991). At II > several meters, roughness may reflect the 
processes of lateral growth and linking together of several 
fault surfaces, both during the early evolution of the fault 
zone or during subsequent faulting as new secondary 
faults are generated and older ones become inactive. 
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Fig. 11. Amplitude to wavelength ratio as function of wavelength (I&) for several bandwidths between 1 m and several km. (a) 
Increase of amplitude to wavelength ratio parallel to slip direction at fixed average intercept, log(C),,,= - 3.50. (b) Increase of 
amplitude to wavelength ratio perpendicular to slip direction at fixed average intercepts, log(C),,,= -3.50 and 

log(C),,, = - 3.0. 

Fractal models of naturalfault surfaces 

The fractal dimension (D), intercept (log(C)) of power 
spectra, anisotropy factor (AF), and profile variance 
(Table 2) provide the parameters needed to generate 
fractal models of natural fault surfaces. The algorithm of 
Brown (1995) is an appropriate starting point for 
modeling anisotropic surfaces of specified fractal dimen- 
sion and anisotropy. This algorithm is based on the 
spectral synthesis method as discussed by Saupe (1988). 

A model surface is generated by taking the two- 
dimensional, inverse Fourier transform of a synthesized 
amplitude spectrum, which is computed by specifying the 
fractal dimension (D) and anisotropy factor (AFmax). 
The resulting corrugated surfaces appear similar to 
natural fault surfaces, but the algorithm does not 
explicitly take into account the azimuthal variation in 
anisotropy factor (AF,+), fractal dimension (D), nor 
intercept (log(C)) that we observe in our measurements. 
We have modified Brown’s algorithm to account 

Table 2. The variation in scaling parameters including yc, yw and K for different wavelength bands 

Parameter 

Yo(x10-3) 

P(” lo-)) 

AF,,, 
D 
Log (C)W, 

15 cm-scale 

6.85 (k0.24) 
11.40 4.55 ( f 0.24) 

(kO.24) 
1.7 
1.53 (kO.03) 

-3.06 (&0.03) 

1 m-scale 

4.86 (k 0.36) 
4.13 8.96(&0.36) (kO.36) 

1.9 
1.26(*0.03) 

-3.50 (kO.20) 

several m-scale 

3.58 (kO.48) 
15.58 (kO.48) 
12.30(&0.48) 
4.5 
1.25 (kO.04) 

-3.48 (kO.20) 

hundred m-scale 

14.1 (+2.00) 
33.0 18.9 (&2.50) 

(k2.13) 
2.4 

-1.10 
% -3.5 

several km-scale 

14.0 (?) 
34.9 20.9 (k4.10) 

(?) 
2.5 (?) 

zl.05 
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explicitly for the observed azimuthal variation in AF+, to 
incorporate explicitly the intercept of the power spectrum 
for scaling purposes, and to allow the fractal dimension 
(D) to be specified as a function of azimuth (Appendix). 
We do not take account of azimuthal variation in log(C), 
but use an average value. Figure 12 graphically illustrates 
the difference in power spectra of models with directional 
variation in one or more of these parameters. First we 
compare the difference between Brown’s algorithm and 
the one in which At’(d) is explicitly computed as a 
function of azimuth by showing the difference between 
two fractal fault surfaces, one generated with fixed AFmax 
(Brown’s algorithm) and the other with azimuthal 
variation in AF,,, given by equation (11). There is little 
difference between the two surfaces, which indicates that 
specification of the maximum anisotropy ratio is ade- 
quate for modeling purposes, if fractal dimension (D) is 
constant. We also compare the difference between two 
fractal fault surfaces, one generated with fixed AF,,, and 
the other with azimuthal variation in D, using represen- 

f- Spatial Frequency 

b Spatial Frequency 

Fig. 12. Graphical illustration of the difference in power spectral 
models generated by azimuthal variation in scaling parameters. (a) 
Azimuthal variation in intercepts (log(c)). (b) Azimuthal variation in 

fractal dimension (D). 

tative parameters indicated by our measurements. The 
intercept (log(C)) is the same in both models. D varies 
smoothly from 2.26 parallel to slip direction to 2.06 
perpendicular to slip direction. There is a large difference 
between the textures of the two surfaces, demonstrating 
that azimuthal variation in D may be an important 
feature to incorporate in modeling algorithms. 

Fault surfaces modeled by varying D as a function of 
azimuth (4) contain elongate corrugations parallel to slip 
direction, but are more strongly ‘cross corrugated’ than 
those generated with constant D (Fig. 13). This difference 
in surface texture is an important control on the 
geometrical properties of aperture generated by sliding 
of opposing fault walls (Fig. 14). The aperture distribu- 
tion is less anisotropic for the faults with azimuthal 
variation in D than for those with fixed D. There is better 
connectivity between void space in the former models 
than in the latter type, because of the cross corrugated 
surface texture. This difference may be particularly 
significant for creating better frictional models of faulting 
(Power & Tullis 1992) understanding fault hydrology 
(Thompson & Brown 199 1) and predicting the geometry 
of fault controlled ore deposits (Brown & Bruhn 1996). 

The processes or features responsible for creating fault 
surfaces with azimuthal variation in fractal dimension 
(D) require further study, but two mechanisms seem 
particularly significant after considering structural rela- 
tionships in outcrops and published observations by 
mine geologists (Newhouse 1940). These field observa- 
tions are relevant to the subsidiary cross corrugation 
texture developed in the fractal fault surface models 
based on azimuthal variation in D (Fig. 13). Refraction of 
fault surfaces across lithologic boundaries such as bed- 
ding, unconformities and igneous or metamorphic rock 
contacts gives rise to cross-corrugations trending at 
various angles to slip direction, depending upon the 
orientation of the contacts (Guilbert & Park 1986, 
Roscoe 195 1). The main fault surface may also be cut by 
secondary faults, such as R and R’ shears (Fig. 15, Petit 
1988, Tchalenko 1970). If these faults are activated 
during rupturing on the main surface, they will locally 
offset and warp the main fault surface into complex 
corrugations that appear at least qualitatively similar to 
those generated by the fractal model with azimuthal 
variation in fractal dimension (D) (Fig. 13). This type of 
structural relationship between primary and secondary 
faulting is observed on the large surface of the Wasatch 
fault at the Seven Peaks locality. 

Fault models like those in Fig. 13 provide a starting 
point for investigating a number of problems: predicting 
subsurface fault structure from sinuous scarps (Bruhn et 
al. 1991), understanding fluid transport and ore deposi- 
tion in fault controlled mineral deposits (Thompson & 
Brown 1991, Brown & Bruhn 1996) and modeling the 
secondary fracturing and brecciation in rocks surround- 
ing fault surfaces (Petit 1988), among others. Establish- 
ing correlations between dimensional properties of fault 
corrugations, frequencies of earthquake source coda, and 
perhaps aftershock distributions is another potential area 
of research (Ben-Zion & Rice 1995). 
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Cross corrugation 

Fig. 13. Example of fractal models of natural fault surfaces using the modified algorithm in the Appendix with fixed average 
intercept. log(C),,,= - 3.5. (a) Azimuthal variation in AFwith constant D. AF@ varies from I .O parallel to slip direction to 4.5 
perpendicular to slip and D is 2.26. (b) Azimuthal variation in D. D(4) varies from 2.26 parallel to slip direction to 2.06 

perpendicular to slip and AF,,,, is 4.5. Note the stronger cross corrugations than in (a). 

CONCLUSION 

Fractal geometry (Mandelbrot 1983) can be used to 
characterize a natural fault surface. However, a single 
fractal dimension does not adequately describe the 
spatial scaling because the scaling parameters such as 
the slope (fractal dimension) and intercept of power 
spectra strongly depend on the azimuth in the fault 
surface and the wavelength band considered. The spatial 
scaling of fault surfaces is self-affine within the wide 
wavelength range of 1 mm to approximately 5 km. 

The directional anisotropy of a natural fault surface is 
described by an azimuthal scaling function, y+ = K sin(+) 
+ yo or AFb = (AF,nax - 1) sin(#) + 1, where y4 and AF+ 
are the amplitude to wavelength ratio and anisotropy 
factor respectively at azimuth 4. K is an anisotropy 
coefficient and increases systematically with an increase 
of spatial wavelength on natural fault surfaces (Table 2). 

AF,,, is the maximum anisotropy factor and ranges 
between 2.0 and 2.5 at all scales other than i > several 
meters, at which AF,,, = 4.5 for the surfaces measured in 
this study. 

Different processes probably dominate in generating 
surface textures at different spatial scales. Frictional 
wearing by secondary fracturing during rupturing, and 
ploughing of asperities are likely processes that dominate 
surface texture at scales of a few meters and less. Pitting 
of the surfaces by weathering is a potential problem in 
interpreting power spectra at short wavelengths, particu- 
larly in carbonate rocks, and care must be taken in 
selecting appropriate surfaces for measurement. At larger 
scales, geometrical irregularity created by linking 
together of fault surfaces, and intersections of lithologic 
contacts and mesoscopic secondary faults and joints with 
the primary fault surface become potentially important 
features in the surface texture. 

The fractal dimension (D), intercept (log(C)) of power 
spectra, and variation in anisotropy factor (AF), are 
needed to generate realistic fractal models of natural fault 
surfaces using spectral synthesis. The fault surface model 
generated with fixed D and azimuthal variation in AF,,,,, 
shows a good approximation of natural fault surfaces. 
However, the fault surface model generated with azi- 
muthal variation in D presents a better description of 
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Fig. 14. Aperture distribution generated by sliding of opposing fault walls shown in Fig. 13 with offset of 483 mm in 5000 mm 
x 5000 mm fault surface. Arrows are parallel to the slip directions. (a) Oblique view (left) and contour map of aperture (right) 

between two surfaces generated with azimuthal variation in AF with constant D. (b) Oblique view (left) and contour map of 
aperture (right) between two surfaces generated with azimuthal variation in D. Low to high contour of apertures range from 

black to white. Note the more isotropic aperture distribution in (b) than in (a). 

Secondary Faults 

‘Cross Corrugated’ /\ 

Fig. 15. Schematic diagram illustrates that cross corrugations approxi- 
mately normal to slip direction may be formed by subsidiary faults. R 

shears are shown schematically in this example. 

natural fault surfaces, showing cross corrugations with 
respect to slip direction. The latter fault model can be 
applied to predict the geometries of subsurface fault 
structures which create complex surface scarps, to model 
fluid transport and ore deposition in fault controlled 
mineral deposits, to generate models of secondary 
stresses in the adjacent wall rock, and to investigate the 
characteristics of the gouge zone generated during 
frictional sliding. Applications to earthquake source 
processes and aftershock distributions may also be 
explored in the future. 
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ALGORITHM 
Title 
Arguments Wl[l 

N 
Hr, HI 

Variables j,kjO,kO 
Rad, Phase 
Phi 
Hur 
4111 

Functions Angle( ) 
RandNum( ) 
InvFFTZD 

Fault surface (X, N, Hur, Seed, Phi) 
Fractal fault surface with variable fractal dimension 
array of complex values of size NxN 
size of array X along one dimension 
Hurst exponent perpendicular and paralle to slip direr 
integers 
polar coordinates for Fourier coefficient 
angle to slip direction 
Hurst exponent at angle to slip direction 
array of complex variables of size NxN 
gets angle from array index 
returns a random number 
fast Fourier transform in two dimensions 

BEGIN 
InitRandNum(Seed); 
FOR j:=O TO N/2 DO 

FORk:=OTON/ZDO 
Phase: =2 * 3.14159 * RandNum 0; 
IF (j > 0 AND k > 0) THEN Phi: = Angle(); 
ELSE 

IF (k: = 0) THEN Phi: = 0; 
ELSE Phi: =3.14159/2; 
END IF 

END IF 
Hur: = (Hr-HI) * sin(Phi) + Hl; 
IF (j #O AND k 20) THEN Rad: =power(j*j + k*k,-(Hur + 1)/2); 
ELSE Rad: = 0; 
END IF 
A b][k]: = (Rad * cos(Phase) + Rad l sin(Phase)); 
IF (i = 0) THEN j0: = 0; 
ELSE j0: = N-j; 
END IF 
IF (k = 0) THEN k0: = 0; 
ELSE k0: = N-k; 
END IF 
A [iO][kO]: = (Rad*cos(Phase)-Rad*sin(Phase)); 

END FOR 
END FOR 
A[N/Z][O].img: = 0; 
A[O][N/Z].img: = 0; 
A[N/Z]m/Z].img: = 0 
FORj:=l TON/2-I DO 

FORk:=l TON/2- 1 DO 
Phase: = 2 * 3.14159 * RandNum( ); 
Rad: = power (j*j + k*k,-(Hur + 1)/2); 
Alj][N-k]: = (Rad * cos(Phase) + Rad * sin(Phase)); 
A[k][N-j]: = (Rad*cos(Phase)-Rad * sin(Phase)); 

END FOR 
END FOR 
InvFFT2D (A, X, N); 

END 


